
Chapitre 3

Thermodynamique

de sous-systèmes simples

3.1 Thermalisation de deux sous-systèmes

Un système isolé est constitué de deux sous-systèmes fermés 1 et
2 séparés par une paroi immobile, diatherme et imperméable. Initialement,
ils sont à températures T1i et T2i. Le sous-système 1 contient N1 moles de
gaz. L’énergie interne du gaz est donnée par U1 = c1N1RT1, où T1 est la
température du gaz, R est une constante positive et c1 est un coefficient sans
dimension. De manière similaire, il y a N2 moles de gaz dans le sous-système 2
et l’énergie interne du gaz est donnée par U2 = c2N2RT2.

1) Déterminer la température finale Tf du système après thermalisation.

2) Déterminer la variation d’énergie interne ∆U1 i→f due à la thermalisation.

3) Comparer la température initiale T2i du sous-système 2 et la température
finale Tf du système si la taille du sous-système 2 est beaucoup plus grande
que celle du sous-système 1.

3.1 Solution

1) L’énergie interne du système dans l’état initial i est la somme des énergies
internes initiales des deux sous-systèmes,

Ui = U1i + U2i = c1N1RT1i + c2N2RT2i

Dans l’état final f après thermalisation, le système est à l’équilibre ther-
mique à température finale Tf . L’énergie interne du système dans l’état
final f est la somme des énergies internes finales des deux sous-systèmes,

Uf = U1f + U2f = c1N1RTf + c2N2RTf

Étant donné que le système est isolé, la variation d’énergie interne (1.65)
est nulle,

∆Ui→f = Uf − Ui = c1N1RTf + c2N2RTf − c1N1RT1i − c2N2RT2i = 0

Par conséquent, la température finale du système est,

Tf =
c1N1T1i + c2N2T2i

c1N1 + c2N2
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2) La variation d’énergie interne du premier sous-système s’écrit,

∆U1 i→f = U1f − U1i = c1N1R (Tf − T1i)

et peut être mise sous la forme suivante,

∆U1 i→f = c1N1R

(
c1N1T1i + c2N2T2i

c1N1 + c2N2
− T1i

)
=

c1c2 N1N2

c1N1 + c2N2
R (T2i − T1i)

3) La température finale du système Tf peut s’écrire,

Tf =
1

1 +
c1
c2

N1

N2

(
T2i +

c1
c2

N1

N2
T1i

)

Si le sous-système 2 est beaucoup plus grand que le sous-système 1, il
contient beaucoup plus de gaz, c’est-à-dire N1 ≪ N2. Dans cette limite,
pour des coefficients c1 et c2 et des températures T1i et T2i du même ordre
de grandeur,

c1
c2

N1

N2
≪ 1 et

c1
c2

N1

N2
T1i ≪ T2i

Ainsi, compte tenu de ces approximations, la température finale du système
Tf est égale à la température initiale T2i du sous-système 2,

Tf = T2i

Ainsi, la température T2i reste constante durant le processus de therma-
lisation. En d’autres termes, la température du grand sous-système 2 ne
varie pas lorsqu’il est mis en contact avec le petit sous-système 1. Le sous-
système 2 se comporte alors comme un réservoir de chaleur ou un bain
thermique. On introduira formellement la notion de réservoir de chaleur au
chapitre suivant (sect. 4.5.1).

3.5 Transfert stationnaire de matière entre deux blocs

Un système est formé de deux blocs contenant une seule substance
homogène, considérés comme des systèmes simples, séparés par une paroi fixe,
diatherme et perméable (fig. 3.1). Le système est maintenu à température T .
Le bloc 1 est maintenu à un potentiel chimique µ1 et le bloc 2 à un potentiel
chimique µ2 où µ1 > µ2. Un transfert stationnaire de matière a lieu entre les
blocs. On note I 0→1

Q et I 0→1
C le courant de chaleur et le courant énergétique

de matière de l’environnement vers le bloc 1, I 1→2
Q et I 1→2

C le courant de cha-

leur et le courant énergétique de matière du bloc 1 vers le bloc 2, et I 2→0
Q

et I 2→0
C le courant de chaleur et le courant énergétique de matière du bloc 2

vers l’environnement. On suppose que le transfert de matière entre l’environne-
ment et chaque bloc a lieu au potentiel chimique du bloc. Durant le transfert
stationnaire de matière et de chaleur :
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Fig. 3.1 Un transfert stationnaire de matière et de chaleur a lieu entre l’environnement et
le bloc 1, le bloc 1 et le bloc 2, et le bloc 2 et l’environnement.

1) Montrer que les sommes du courant de chaleur et du courant énergétique
de matière de l’environnement vers le premier bloc, du premier bloc vers le
deuxième, et du deuxième bloc vers l’environnement sont égales,

I 0→1
Q + I 0→1

C = I 1→2
Q + I 1→2

C = I 2→0
Q + I 2→0

C

2) Montrer que les courants de substance de l’environnement vers le premier
bloc, du premier bloc vers le deuxième et du deuxième bloc vers l’environ-
nement sont égaux,

I ≡ I 0→1 = I 1→2 = I 2→0

3) Déterminer le courant d’entropie IS entre l’environnement et le système et
la source d’entropie ΣS du système.

4) Montrer que le courant de chaleur sortant du système est supérieur au
courant de chaleur entrant,

I 2→0
Q > I 0→1

Q

5) Exprimer le courant énergétique de matière IC de l’environnement vers le
système en termes du courant de substance I, puis en termes de la source
d’entropie ΣS .

6) Justifier que le courant énergétique de matière peut être écrit de la manière
suivante,

IC = RCI
2

et déterminer la résistance RC au transfert de matière de la paroi entre les
blocs.

3.5 Solution

1) Le courant de chaleur IQ1 et le courant énergétique de matière IC1 entrant
dans le bloc 1 sont la différence entre les courants entrant de l’environne-
ment et les courants sortant dans le bloc 2, et le courant de chaleur IQ2

et le courant énergétique de matière IC2
entrant dans le bloc 2 sont la dif-

férence entre les courants entrant du bloc 1 et les courants sortant dans
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l’environnement,

IQ1
+ IC1

= I 0→1
Q − I 1→2

Q + I 0→1
C − I 1→2

C

IQ2
+ IC2

= I 1→2
Q − I 2→0

Q + I 1→2
C − I 2→0

C

Durant le transfert stationnaire de matière et de chaleur, la dérivée tem-
porelle de l’énergie interne de chaque bloc est nulle. Ainsi, le premier prin-
cipe (3.6) appliqué à chaque bloc, considéré comme un système simple,
s’écrit,

U̇1 = IQ1 + IC1 = I 0→1
Q − I 1→2

Q + I 0→1
C − I 1→2

C = 0

U̇2 = IQ2 + IC2 = I 1→2
Q − I 2→0

Q + I 1→2
C − I 2→0

C = 0

Par conséquent, les sommes du courant de chaleur et et du courant éner-
gétique de matière sont égales,

I 0→1
Q + I 0→1

C = I 1→2
Q + I 1→2

C = I 2→0
Q + I 2→0

C

2) Le courant de substance I1 entrant dans le bloc 1 est la différence entre le
courant entrant de l’environnement et le courant sortant dans le bloc 2, et
le courant de substance I2 entrant dans le bloc 2 est la différence entre le
courant entrant du bloc 1 et le courant sortant dans l’environnement,

I1 = I 0→1 − I 1→2 et I2 = I 1→2 − I 2→0

En état stationnaire, la dérivée temporelle du nombre de moles de sub-
stances dans chaque bloc est nulle. Ainsi, l’équation de bilan de sub-
stance (2.22) de chaque bloc, considéré comme un système simple, s’écrit,

Ṅ1 = I1 = I 0→1 − I 1→2 = 0

Ṅ2 = I2 = I 1→2 − I 2→0 = 0

Par conséquent, les courants de substance sont égaux,

I ≡ I 0→1 = I 1→2 = I 2→0

3) Le premier principe (3.6), appliqué à chaque bloc, est exprimé en termes
des courants d’entropie et de substance comme,

U̇1 = T IS1
+ µ1 I1 = 0

U̇2 = T IS2 + µ2 I2 = 0

où IS1
et IS2

sont les courants d’entropie des blocs 1 et 2. Ainsi, les courants
d’entropie de chaque bloc sont,

IS1
= − µ1

T
I1 =

µ1

T

(
I 1→2 − I 0→1

)
IS2 = − µ2

T
I2 =

µ2

T

(
I 2→0 − I 1→2

)
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Comme les blocs sont des systèmes simples, leur source d’entropie est
nulle (3.8). Ainsi, la dérivée temporelle de l’entropie du système est la
somme des courants d’entropie des blocs. En état stationnaire, la dérivée
temporelle de l’entropie du système est nulle,

Ṡ = IS1
+ IS2

=
1

T

(
µ2 I

2→0 − µ1 I
0→1

)
+

1

T
(µ1 − µ2) I

1→2 = 0

Compte tenu de l’équation de bilan d’entropie du système (2.3), on identifie
alors le courant d’entropie entre l’environnement et le système,

IS =
1

T

(
µ2 I

2→0 − µ1 I
0→1

)
=

1

T
(µ2 − µ1) I

et la source d’entropie du système,

ΣS =
1

T
(µ1 − µ2) I

1→2 =
1

T
(µ1 − µ2) I

On en conclut que le courant d’entropie est l’opposé de la source d’entropie,

ΣS = − IS > 0

comme il se doit pour un transfert stationnaire de matière.

4) Les courants énergétiques de matière liés au transfert de matière entre les
deux sous-systèmes et l’environnement s’écrivent,

I 0→1
C = µ1 I

0→1 et I 2→0
C = µ2 I

2→0

Ainsi, le courant énergétique de matière entrant est supérieur au courant
énergétique de matière sortant,

I 0→1
C = µ1 I

0→1 > µ2 I
0→1 = µ2 I

2→0 = I 2→0
C

ce qui implique que le courant de chaleur sortant est supérieur au courant
de chaleur entrant,

I 2→0
Q = I 0→1

Q + I 0→1
C − I 2→0

C > I 0→1
Q

pour compenser le dégagement de chaleur dû à la dissipation générée par
le transfert irréversible de matière dans le système.

5) Les courants énergétiques de matière de l’environnement vers chaque sous-
système s’écrivent,

IC1
= I 0→1

C − I 1→2
C et IC2

= I 1→2
C − I 2→0

C

Le courant énergétique de matière de l’environnement vers le système est
la somme de ces courants,

IC = IC1 + IC2 = I 0→1
C − I 2→0

C
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Les courants énergétiques de matière sont exprimés en termes des courants
de substance et des potentiels chimiques de manière suivante,

I 0→1
C = µ1 I

0→1 = µ1 I et I 2→0
C = µ2 I

2→0 = µ2 I

Par conséquent, le courant énergétique de matière de l’environnement vers
le système devient,

IC = (µ1 − µ2) I

La source d’entropie s’écrit,

ΣS =
1

T
(µ1 − µ2) I =

IC
T

> 0

Ainsi le courant énergétique de matière de l’environnement vers le système
peut être écrit comme,

IC = T ΣS > 0

6) Étant donné que la source d’entropie ΣS décrit le transfert irréversible de
matière dans le système, elle est une fonction strictement positive du cou-
rant de substance I. Au voisinage de l’équilibre où le courant de substance
est suffisamment petit, le courant énergétique de matière, qui est le produit
de la température et de la source d’entropie, doit être une forme quadratique
définie positive du courant de substance I où la constante de proportion-
nalité positive est la résistance au transfert de matière de la paroi entre les
blocs,

IC = T ΣS = RCI
2 > 0

Par conséquent, la résistance RC au transfert de matière de la paroi entre
les blocs est,

RC =
IC
I2

=
T ΣS

I2
=

µ1 − µ2

I
> 0

et la différence de potentiel chimique entre les blocs ∆µ = µ1 − µ2 s’écrit,

∆µ = RCI

3.6 Diffusion d’un gaz à travers une paroi perméable

On désire modéliser la diffusion d’un gaz constitué d’une seule sub-
stance à travers une paroi perméable diatherme. On considère un système isolé
contenant N moles de gaz, formé de deux sous-systèmes de volumes identiques
séparés par une paroi perméable rigide. Le gaz diffuse d’un sous-système à
l’autre. Il y a N1 (t) moles de gaz dans le sous-système 1 et N2 (t) moles dans
le sous-système 2. On modélise les potentiels chimiques en considérant qu’ils
sont proportionnels à la quantité de substance :

µ1

(
N1 (t)

)
=

ℓ

FA

N1 (t)

2τ

µ2

(
N2 (t)

)
=

ℓ

FA

N2 (t)

2τ
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où τ > 0 est un temps caractéristique de diffusion, F > 0, le coefficient de
diffusion de Fick, A > 0, l’aire et ℓ > 0, l’épaisseur de la paroi. Initialement, il
y a N0 moles dans le sous-système 1, c’est-à-dire N1 (0) = N0, et N− N0 moles
dans le sous-système 2, c’est-à-dire N2 (0) = N − N0. Déterminer l’évolution
du nombre de moles N1 (t) et N2 (t) dans les sous-systèmes 1 et 2. En déduire
le nombre de moles dans chaque sous-système à l’équilibre.

3.6 Solution

La quantité de gaz dans le système est égale à la somme de la quantité de gaz
dans les deux sous-systèmes,

N = N1 (t) +N2 (t)

Comme le système est isolé, la dérivée temporelle Ṅ1 du nombre de moles
de gaz dans le sous-système 1 est égale au courant de gaz I 2→1 à travers la
paroi. D’après l’équation de diffusion irréversible (3.75), on obtient l’équation
d’évolution du nombre de moles de gaz,

Ṅ1 (t) = I 2→1 (t) = F
A

ℓ

(
µ2 (t)− µ1 (t)

)
=

1

2τ

(
N2 (t)− N1 (t)

)
= − 1

τ

(
N1 (t)−

N

2

)
L’intégrale de cette équation d’évolution s’écrit formellement,∫ N1(t)

N0

dN ′
1 (t

′)

N ′
1 (t

′)− N
2

= − 1

τ

∫ t

0

dt′

et le résultat de cette intégration est donné par,

ln

(
N1 (t)− N

2

N0 − N
2

)
= − t

τ

ce qui implique que,

N1 (t) =
N

2
+

(
N0 −

N

2

)
exp

(
− t

τ

)
et, vu que N2 (t) = N − N1 (t), on a,

N2 (t) =
N

2
+

(
N

2
− N0

)
exp

(
− t

τ

)
Ainsi, à l’équilibre, lorsque t → ∞,

N1 (∞) = N2 (∞) =
N

2

ce qui signifie qu’il y a la même quantité de gaz dans chaque sous-système. Par
conséquent, à l’équilibre, le système est homogène.
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3.7 Thermalisation par conduction

A

Fig. 3.2 Deux blocs métalliques formés du même métal sont séparés par une paroi diatherme
de section A et d’épaisseur ℓ. Les métaux atteignent un état d’équilibre thermique dû au
transfert de chaleur par conduction à travers la paroi.

Un système isolé est formé de deux blocs métalliques qui sont consti-
tués de N1 et N2 moles du même métal (fig. 3.2). On modélise l’interface entre
les deux blocs comme une fine paroi diatherme métallique de section A, d’épais-
seur ℓ, de conductivité thermique κ et d’énergie interne négligeable. Les énergies
internes des blocs 1 et 2 sont,

U1 (t) = 3N1RT1 (t) et U2 (t) = 3N2RT2 (t)

où R est une constante positive. Les températures initiales des blocs sont dif-
férentes, c’est-à-dire T1 (0) ̸= T2 (0).

1) Déterminer la température finale Tf du système lorsqu’il atteint l’équilibre
thermique au temps tf .

2) Établir le système d’équations différentielles qui décrit l’évolution tempo-
relle couplée des températures T1 (t) et T2 (t) des deux blocs.

3) Dans le cas particulier où les blocs ont le même nombre de moles de consti-
tuants, c’est-à-dire N1 = N2 = N , montrer que la différence de température
∆T (t) = T1 (t)− T2 (t) décrôıt de manière exponentielle au cours du temps
lors de la thermalisation.

3.7 Solution

1) Compte tenu des énergies internes des deux blocs au temps initial t = 0 et
au temps final t = tf ,

U1 (0) = 3N1RT1 (0) et U1 (tf ) = 3N1RTf

U2 (0) = 3N2RT2 (0) et U2 (tf ) = 3N2RTf

la variation d’énergie interne de chaque bloc s’écrit,

∆U1 = U1 (tf )− U1 (0) = 3N1R
(
Tf − T1 (0)

)
∆U2 = U2 (tf )− U1 (0) = 3N2R

(
Tf − T2 (0)

)
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La variation d’énergie interne ∆U du système est la somme des variations
d’énergies internes ∆U1 et ∆U2 des deux blocs. Étant donné que le sys-
tème est isolé, la dérivée temporelle de l’énergie interne du système est
nulle (1.47),

∆U = ∆U1 +∆U2 = 0

ce qui s’écrit explicitement comme,

3N1R
(
Tf − T1 (0)

)
+ 3N2R

(
Tf − T2 (0)

)
= 0

Ainsi, on obtient l’expression de la température finale Tf du système,

Tf =
N1T1 (0) +N2T2 (0)

N1 +N2

2) Le premier principe (3.6) appliqué à chaque sous-système est décrit par la
loi de Fourier (3.22),

U̇1 (t) = 3N1R Ṫ1 (t) = I 2→1
Q (t) = κ

A

ℓ

(
T2 (t)− T1 (t)

)
U̇2 (t) = 3N2R Ṫ2 (t) = I 1→2

Q (t) = κ
A

ℓ

(
T1 (t)− T2 (t)

)
Ainsi, les équations d’évolution temporelle des températures des blocs sont
données par,

Ṫ1 (t) =
κ

3N1R

A

ℓ

(
T2 (t)− T1 (t)

)
Ṫ2 (t) =

κ

3N2R

A

ℓ

(
T1 (t)− T2 (t)

)
3) La dérivée temporelle de la différence de température ∆T (t) = T1 (t) −

T2 (t) entre les blocs s’écrit,

∆Ṫ (t) = Ṫ1 (t)− Ṫ2 (t)

Par conséquent, dans le cas particulier où les blocs ont le même nombre de
moles de constituants, c’est-à-dire N1 = N2 = N , l’équation d’évolution de
la différence de température entre les blocs est la suivante,

∆Ṫ (t) = − 2κ

3NR

A

ℓ
∆T (t)

Compte tenu de la différentielle d
(
∆T (t′)

)
= ∆Ṫ (t′) dt′, l’intégration de

l’équation différentielle par rapport au temps de t′ = 0 à t′ = t s’écrit,∫ ∆T (t)

∆T (0)

d
(
∆T (t′)

)
∆T ′ (t′)

= − 2κ

3NR

A

ℓ

∫ t

0

dt′

Le résultat de cette intégrale est,

ln

(
∆T (t)

∆T (0)

)
= − 2κ

3NR

A

ℓ
t ≡ − t

τ
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où le temps de thermalisation τ est défini comme,

τ =
3NR

2κ

ℓ

A

Ainsi, la différence de température entre les deux blocs décrôıt de manière
exponentielle au cours du temps lors de la thermalisation,

∆T (t) = ∆T (0) exp

(
− t

τ

)
où ∆T (0) = T1 (0)− T2 (0).

3.9 Amortissement mécanique par transfert de chaleur

Un système isolé de volume V est constitué de deux sous-systèmes,
notés 1 et 2, séparés par une paroi imperméable, diatherme et mobile, de masse
M , d’aire A et de volume négligeable. Les deux sous-systèmes sont à l’équilibre
thermique à température T . Ils sont constitués chacun de N moles de gaz
parfait, ce qui signifie que la pression pi du gaz dans le sous-système i, son
volume Vi, le nombre de moles N et la température T sont liés par l’équation
piVi = NRT où R est une constante positive (sect. 5.6). La masse du gaz est
négligeable par rapport à la masse de la paroi et l’énergie interne de la paroi
est négligeable par rapport à celle du gaz. Initialement, le système n’est pas
à l’équilibre mécanique. On considère que la variation de volume ∆V entre le
volume Vi de chaque sous-système et son volume V0 à l’équilibre mécanique est
petite, c’est-à-dire ∆V ≪ V0.

1) Exprimer la source d’entropie ΣS en termes de la variation de pression entre
les sous-systèmes p1 − p2 et des dérivées temporelles du volume V̇1 et V̈1.

2) Déterminer la différence de pression p1 − p2 entre les sous-systèmes en
écrivant la source d’entropie comme une forme quadratique définie positive,

ΣS =
ξ

T
V̇ 2
1 ⩾ 0

3) Compte tenu du fait que les sous-systèmes sont constitués d’un gaz parfait,
à l’aide d’un développement limité au premier ordre en ∆V/V0, montrer que
l’équation du mouvement de la paroi est celle d’un oscillateur harmonique
amorti,

ẍ+ 2 γ ẋ+ ω2
0 x = 0

où x est la coordonnée du déplacement de la paroi par rapport à la position
d’équilibre. Déterminer l’expression du coefficient de frottement γ et de la
pulsation ω0 des oscillations non amorties.

4) En régime d’amortissement faible, c’est-à-dire γ < ω0, déterminer la période
T des oscillations amorties.
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3.9 Solution

1) Comme la masse du gaz est négligeable par rapport à la masse de la paroi,
que le volume de la paroi est négligeable par rapport au volume du gaz
et que l’énergie interne de la paroi est négligeable par rapport à celle du
gaz, l’énergie du système est la somme de l’énergie cinétique de la paroi de
masse M et de vitesse v, et des énergies internes U1 et U2 du gaz dans les
deux sous-systèmes,

E =
1

2
M v2 + U1 + U2

La dérivée temporelle de l’énergie interne s’écrit,

Ė = M v · v̇ + U̇1 + U̇2

Comme la paroi est imperméable, le nombre de moles de gaz N dans chaque
sous-système est constant. De plus, le système est à l’équilibre thermique
à température T . Ainsi, compte tenu de la relation (2.19), les dérivées
temporelles de l’énergie interne de chaque sous-système s’écrivent,

U̇1 = T Ṡ1 − p1 V̇1 et U̇2 = T Ṡ2 − p2 V̇2

Comme le système est isolé, l’énergie E est constante d’après le premier
principe (1.13). Ainsi, la dérivée temporelle de l’énergie s’annule,

Ė = T
(
Ṡ1 + Ṡ2

)
− p1 V̇1 − p2 V̇2 +M v · v̇ = 0

De plus, il n’y a pas d’échange d’entropie avec l’environnement. Par consé-
quent, compte tenu du deuxième principe (2.1) et de l’extensivité de l’entro-
pie (3.2),

Ṡ1 + Ṡ2 = Ṡ = ΣS

Ainsi, on obtient une expression pour la source d’entropie ΣS ,

ΣS =
1

T

(
p1 V̇1 + p2 V̇2 − M v · v̇

)
Comme le système est isolé, son volume V est constant. On déduit alors la
condition suivante,

V̇ = V̇1 + V̇2 = 0 ainsi V̇2 = − V̇1

On définit l’orientation positive du vecteur vitesse v de la paroi lorsque
son mouvement accrôıt le volume V1 du sous système 1, c’est-à-dire lorsque
V̇1 > 0. En introduisant alors un vecteur surface de la paroi A = cste
colinéaire au vecteur vitesse et dont la norme correspond à l’aire A de la
surface de la paroi, on obtient les conditions suivantes,

V̇1 = A · v et ainsi V̈1 = A · v̇

ce qui implique que,

M v · v̇ =
M

A2
V̇1 V̈1
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Par conséquent, la source d’entropie devient,

ΣS =
1

T

(
(p1 − p2)−

M

A2
V̈1

)
V̇1

2) D’après la condition d’évolution du deuxième principe (2.3), la source
d’entropie doit être une forme quadratique définie positive,

ΣS =
ξ

T
V̇ 2
1 ⩾ 0

où ξ > 0 est le coefficient de frottement thermoélastique qui est différent
de celui obtenu pour une paroi de masse négligeable (3.48). En comparant
les deux expressions pour la source d’entropie, on obtient la différence de
pression entre les sous-systèmes en termes de V̇1 et de V̈1,

p1 − p2 =
M

A2
V̈1 + ξ V̇1

3) Comme il y a N moles de gaz dans chaque sous-système, le volume V0

de chaque sous-système à l’équilibre sera la moitié du volume V du sys-
tème. Ainsi, dans la limite d’un petit déplacement autour de la position
d’équilibre,

V1 = V0 +∆V et V2 = V0 − ∆V

où V0 = V/2 et ∆V ≪ V0. Comme il y a N moles de gaz parfait à tempé-
rature T dans chaque sous-système, en faisant un développement limité au
premier ordre en ∆V/V0, on obtient,

p1 =
NRT

V1
=

NRT

V0

1

1 +
∆V

V0

≃ NRT

V0

(
1− ∆V

V0

)

p2 =
NRT

V2
=

NRT

V0

1

1− ∆V

V0

≃ NRT

V0

(
1 +

∆V

V0

)

Par conséquent, compte tenu de V0 = V/2, on obtient dans cette limite,

p1 − p2 = − 2NRT

V 2
0

∆V = − 8NRT

V 2
∆V

La variation de volume ∆V est le produit de l’aire A de la surface de la
paroi et du déplacement x de la paroi par rapport à la position d’équilibre.
Ainsi, compte tenu du fait que x = 0 à l’équilibre et V0 = cste,

∆V = Ax et V̇1 = V̇0 +∆V̇ = ∆V̇ = A ẋ ainsi V̈1 = A ẍ

À l’aide de ces relations, l’équation du mouvement obtenue au point pré-
cédent multipliée par A/M devient,

ẍ+
ξ A2

M
ẋ+

8A2 NRT

M V 2
x = 0
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Cette équation décrit le mouvement d’un oscillateur harmonique amorti,
qui peut être mis sous la forme,

ẍ+ 2 γ ẋ+ ω2
0 x = 0

où le coefficient de frottement est donné par,

γ =
ξ A2

2M

et la pulsation des oscillations non amorties s’écrit,

ω0 =

√
8A2 NRT

M V 2

4) En régime d’amortissement faible, γ < ω0, la pulsation des oscillations
amorties est donnée par

(1)
,

ω =
√
ω2
0 − γ2 =

A

2M V

√
32MNRT − ξ2 A2 V 2

La période des oscillations amorties est alors,

T =
2π

ω
=

4πM V

A

1√
32MNRT − ξ2 A2 V 2

L’équation du mouvement oscillatoire amorti rend compte de l’amortisse-
ment viscoélastique décrit en rhéologie par le modèle de Zener

(2)
.
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