CHAPITRE 3

Thermodynamique

de sous-systemes simples

3.1 Thermalisation de deux sous-systémes

Yoodokr Un systéme isolé est constitué de deux sous-systémes fermés 1 et
2 séparés par une paroi immobile, diatherme et imperméable. Initialement,
ils sont a températures T7; et T;. Le sous-systeme 1 contient Ni moles de
gaz. L’énergie interne du gaz est donnée par Uy = ¢ N1 RTy, ou T; est la
température du gaz, R est une constante positive et ¢; est un coefficient sans
dimension. De maniéere similaire, il y a N2 moles de gaz dans le sous-systeme 2
et I’énergie interne du gaz est donnée par Uy = coNo R T5.

1) Déterminer la température finale Ty du systeme apres thermalisation.

2) Déterminer la variation d’énergie interne AUy ;_y due & la thermalisation.

3) Comparer la température initiale Tp; du sous-systeéme 2 et la température
finale Ty du systeme si la taille du sous-systeme 2 est beaucoup plus grande
que celle du sous-systeme 1.

Solution

1) L’énergie interne du systéme dans 1’état initial ¢ est la somme des énergies
internes initiales des deux sous-systemes,

Ui = Ui + Uy = et N1 RT1; + caNaRT5;

Dans ’état final f apres thermalisation, le systéme est & 1’équilibre ther-
mique a température finale Ty. L’énergie interne du systeme dans 1'état
final f est la somme des énergies internes finales des deux sous-systemes,

Uf = Ulf + U2f = ClNlRTf + CQNQRTf

Etant donné que le systéme est isolé, la variation d’énergie interne (1.65)
est nulle,

AUZ'Hf = Uf - U; = ClNlRTf + CQNQRTf — ¢itN1RTy; — caNasRT5; =0
Par conséquent, la température finale du systeme est,

c1N1T1; + caNoTy;

Ty =
! c1N1 + 2N
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2) La variation d’énergie interne du premier sous-systéme s’écrit,
AUuAf = Ulf - Uy = 01N1R(Tf - Tu)
et peut étre mise sous la forme suivante,

aN Ty + coNo Ty Ty)

AUj iy =cNiR (

ClNl + CQNQ
C1C2 N1N2
= ———— R(Ty — Ty
c1 Ny + o Ny ( 2 ! )
3) La température finale du systéme T peut s'écrire,
1 (&1 N1
Tf= —— [ To; + — — T1;
! 1+61M(2+02N2 1)
C2 N2

Si le sous-systéme 2 est beaucoup plus grand que le sous-systeme 1, il
contient beaucoup plus de gaz, c’est-a-dire N7 < N,. Dans cette limite,
pour des coefficients ¢; et co et des températures Ty; et To; du méme ordre

de grandeur,
C1 N1 C1 Nl
—— <1 et — — T K< Ty
Cs N2 Cs N2 1% 21
Ainsi, compte tenu de ces approximations, la température finale du systeme

T} est égale a la température initiale T5; du sous-systeme 2,
Ty =15

Ainsi, la température To; reste constante durant le processus de therma-
lisation. En d’autres termes, la température du grand sous-systéeme 2 ne
varie pas lorsqu’il est mis en contact avec le petit sous-systeme 1. Le sous-
systeme 2 se comporte alors comme un réservoir de chaleur ou un bain
thermique. On introduira formellement la notion de réservoir de chaleur au
chapitre suivant (sect. 4.5.1).

3.5 Transfert stationnaire de matiére entre deux blocs

Yorrokr Un systéme est formé de deux blocs contenant une seule substance
homogene, considérés comme des systemes simples, séparés par une paroi fixe,
diatherme et perméable (fig. 3.1). Le systéme est maintenu & température 7.
Le bloc 1 est maintenu a un potentiel chimique p; et le bloc 2 & un potentiel
chimique po ol p1 > po. Un transfert stationnaire de matiere a lieu entre les
blocs. On note 15_’1 et 127! le courant de chaleur et le courant énergétique
de matiere de ’environnement vers le bloc 1, Ié_’Q et 1172 le courant de cha-
leur et le courant énergétique de matiere du bloc 1 vers le bloc 2, et 15_*0
et 1279 le courant de chaleur et le courant énergétique de matiere du bloc 2
vers I’environnement. On suppose que le transfert de matiere entre ’environne-
ment et chaque bloc a lieu au potentiel chimique du bloc. Durant le transfert
stationnaire de matiere et de chaleur :



Transfert stationnaire de matiere entre deux blocs 3

T
© I @
|
250
g B L@
E— —_— —_—
|
B —— —_—t P —
Icq—)l | Icl,‘_u [('z;au
|
|

Fig. 3.1 Un transfert stationnaire de matitre et de chaleur a lieu entre 'environnement et
le bloc 1, le bloc 1 et le bloc 2, et le bloc 2 et I’environnement.

1)

Montrer que les sommes du courant de chaleur et du courant énergétique
de matiere de ’environnement vers le premier bloc, du premier bloc vers le
deuxieéme, et du deuxieme bloc vers I’environnement sont égales,

IQO*)I 4 ICO~>1 — IQ1~>2 4 161’%2 — IQQ*)O + ICQ’HO

Montrer que les courants de substance de I'environnement vers le premier
bloc, du premier bloc vers le deuxieme et du deuxieme bloc vers ’environ-

nement sont égaux,
I = IO—)I _ Il—>2 _ I2—>O

Déterminer le courant d’entropie Ig entre 'environnement et le systeme et
la source d’entropie ¥ g du systeme.

Montrer que le courant de chaleur sortant du systeme est supérieur au
courant de chaleur entrant,

2—0 0—1
1577 > I

Exprimer le courant énergétique de matiere I de 'environnement vers le
systeme en termes du courant de substance I, puis en termes de la source
d’entropie Xg.

Justifier que le courant énergétique de matiere peut étre écrit de la maniere
suivante,

Ic = RoI?

et déterminer la résistance R¢ au transfert de matiere de la paroi entre les
blocs.

Solution

1)

Le courant de chaleur Ig, et le courant énergétique de matiere I, entrant
dans le bloc 1 sont la différence entre les courants entrant de ’environne-
ment et les courants sortant dans le bloc 2, et le courant de chaleur Ig,
et le courant énergétique de matiere I, entrant dans le bloc 2 sont la dif-
férence entre les courants entrant du bloc 1 et les courants sortant dans
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I’environnement,

IQl +ICI —_ QO—)l _ Ié—)Q +ICO’—>1 _ Cl’—>2
IQ2 +IC2 _ é)—>2 _ Ié—)O +IC1‘_)2 _ IC%_)O
Durant le transfert stationnaire de matiére et de chaleur, la dérivée tem-
porelle de I’énergie interne de chaque bloc est nulle. Ainsi, le premier prin-
cipe (3.6) appliqué & chaque bloc, considéré comme un systéme simple,
s’écrit,
Ul _ IQ1 +ICl _ Q0—>1 _ IQ1—>2 +IC0’—>1 _ Cl’_>2 -0
U2 — IQ2 +ICQ — é—)? _ IQQ—)O +I(}V~)2 _ ICZ‘*)O =0

Par conséquent, les sommes du courant de chaleur et et du courant éner-
gétique de matiere sont égales,

IQO—>1 4 I((j)—>l — IQ1—>2 4 Iclv_>2 — IQQ—)O 4 IC%—>O

Le courant de substance I; entrant dans le bloc 1 est la différence entre le
courant entrant de ’environnement et le courant sortant dans le bloc 2, et
le courant de substance I entrant dans le bloc 2 est la différence entre le
courant entrant du bloc 1 et le courant sortant dans ’environnement,

Il — IO~>1 o Il~>2 et 12 —_ Il~>2 o IQ—)O

En état stationnaire, la dérivée temporelle du nombre de moles de sub-
stances dans chaque bloc est nulle. Ainsi, I’équation de bilan de sub-
stance (2.22) de chaque bloc, considéré comme un systéme simple, s’écrit,

Nl =1 :IO%I o Il—>2 =0
N2 :-[2 :I1—>2 _ I2—>0 =0
Par conséquent, les courants de substance sont égaux,

IEIO*}I :Il—)Q :1'2%0

Le premier principe (3.6), appliqué & chaque bloc, est exprimé en termes
des courants d’entropie et de substance comme,

Uy=TIs, +pu 1L =0
UQZTIS2+/J,2I2:0

ou Ig, et Ig, sont les courants d’entropie des blocs 1 et 2. Ainsi, les courants
d’entropie de chaque bloc sont,

H1 H1 152 0—1
ISI_———Il_——(I -1 )
H2 H2 7250 12
ISQ—_——Ig—_—(I -1 )
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Comme les blocs sont des systeémes simples, leur source d’entropie est
nulle (3.8). Ainsi, la dérivée temporelle de 'entropie du systéme est la
somme des courants d’entropie des blocs. En état stationnaire, la dérivée
temporelle de ’entropie du systéme est nulle,

. 1 1
S =1Is, JFISz:f(#?IzHO* M110%1)+T(M1*M2)11%2:0

Compte tenu de I’équation de bilan d’entropie du systéme (2.3), on identifie
alors le courant d’entropie entre ’environnement et le systeme,

1 1
Jo = — IQ—)O _ IO—>1 _ _ I
S=r (M2 H1 ) T (p2 — p1)
et la source d’entropie du systeme,
Ys = l(/M — ) 117 = l(Ml — p2) !
T T

On en conclut que le courant d’entropie est 'opposé de la source d’entropie,
Ys=—1Is>0

comme il se doit pour un transfert stationnaire de matiere.

Les courants énergétiques de matiere liés au transfert de matiere entre les
deux sous-systemes et ’environnement s’écrivent,

Ig—)l =/ IO—>1 et IC,2'_>0 _ M2I2—>0

Ainsi, le courant énergétique de matiere entrant est supérieur au courant
énergétique de matiere sortant,

ICO—)I _ M1[0—>1 > M2IO—>1 _ ,u21'2—)0 _ IC2—>O

ce qui implique que le courant de chaleur sortant est supérieur au courant
de chaleur entrant,

2—0 0—1 0—1 2—0 0—1

pour compenser le dégagement de chaleur dii a la dissipation générée par
le transfert irréversible de matiere dans le systéme.

Les courants énergétiques de matiere de I’environnement vers chaque sous-
systeme s’écrivent,

0—1 152 1—-2 2—0
Ie, =17 — I¢ et Ie,=1c7"— 15

Le courant énergétique de matiére de I’environnement vers le systeme est
la somme de ces courants,

IC _ Icl +102 _ COal o Igao
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Les courants énergétiques de matiere sont exprimés en termes des courants
de substance et des potentiels chimiques de maniere suivante,

ICO—>1 _ MIIO—)I =/ I et IC,%—)O — M2I2_>0 _ ,LLQI

Par conséquent, le courant énergétique de matiere de ’environnement vers
le systeme devient,

Ic = (1 — p2) 1
La source d’entropie s’écrit,

1 Ic

E:— — Izi
s T(Ml p2) T>0

Ainsi le courant énergétique de matiere de I'environnement vers le systeme
peut étre écrit comme,
Ic=TXs>0

6) Etant donné que la source d’entropie g décrit le transfert irréversible de
matiere dans le systeme, elle est une fonction strictement positive du cou-
rant de substance I. Au voisinage de I’équilibre ou le courant de substance
est suffisamment petit, le courant énergétique de matiere, qui est le produit
de la température et de la source d’entropie, doit étre une forme quadratique
définie positive du courant de substance I ou la constante de proportion-
nalité positive est la résistance au transfert de matiere de la paroi entre les
blocs,

Ic =TYs=RcI?>>0

Par conséquent, la résistance R¢ au transfert de matiere de la paroi entre
les blocs est,

I TX —

12 12 I

et la différence de potentiel chimique entre les blocs Ay = g — po s’écrit,

B¢

A‘LL = Rc[

3.6 Diffusion d’un gaz a travers une paroi perméable

Yok On désire modéliser la diffusion d’un gaz constitué d’une seule sub-
stance a travers une paroi perméable diatherme. On considére un systeme isolé
contenant N moles de gaz, formé de deux sous-systemes de volumes identiques
séparés par une paroi perméable rigide. Le gaz diffuse d'un sous-systeme a
Pautre. Il y a N; (t) moles de gaz dans le sous-systéme 1 et Ny (¢) moles dans
le sous-systeme 2. On modélise les potentiels chimiques en considérant qu’ils
sont proportionnels a la quantité de substance :

i (M) =y 20
LNy (t)

H2 (N2 (t)) T FA 2r
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ou 7 > 0 est un temps caractéristique de diffusion, F' > 0, le coefficient de
diffusion de Fick, A > 0, laire et £ > 0, I’épaisseur de la paroi. Initialement, il
y a Ny moles dans le sous-systeme 1, c’est-a~dire Ny (0) = Ny, et N — Ny moles
dans le sous-systeme 2, c’est-d-dire N (0) = N — Ny. Déterminer I’évolution
du nombre de moles N (t) et Na (t) dans les sous-systémes 1 et 2. En déduire
le nombre de moles dans chaque sous-systeme a 1’équilibre.

Solution

La quantité de gaz dans le systeme est égale a la somme de la quantité de gaz
dans les deux sous-systemes,

N =Ny () + N (¢)

Comme le systeme est isolé, la dérivée temporelle N; du nombre de moles
de gaz dans le sous-systéme 1 est égale au courant de gaz I27! & travers la
paroi. D’apres 1’équation de diffusion irréversible (3.75), on obtient I’équation
d’évolution du nombre de moles de gaz,

Ny () =122 (1) = F 5 (i (1) — i (1)

5 (- M) =1 (Mo - )

L’intégrale de cette équation d’évolution s’écrit formellement,

/Nl(t)le B 7/ "
No Nl (t/)_

et le résultat de cette intégration est donné par,

ce qui implique que,
et, vu que Ny (t) = N — N; (t), on a,

Ainsi, a I'équilibre, lorsque ¢t — oo,
Ny (00) = Nz (00) = —

ce qui signifie qu’il y a la méme quantité de gaz dans chaque sous-systeme. Par
conséquent, a 1’équilibre, le systeme est homogene.
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3.7 Thermalisation par conduction
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Fig. 3.2 Deux blocs métalliques formés du méme métal sont séparés par une paroi diatherme
de section A et d’épaisseur £. Les métaux atteignent un état d’équilibre thermique dia au
transfert de chaleur par conduction a travers la paroi.

Yok Un systeme isolé est formé de deux blocs métalliques qui sont consti-
tués de Ny et Ny moles du méme métal (fig. 3.2). On modélise 'interface entre
les deux blocs comme une fine paroi diatherme métallique de section A, d’épais-
seur ¢, de conductivité thermique x et d’énergie interne négligeable. Les énergies
internes des blocs 1 et 2 sont,

U1 (t) = 3N1RT1 (t) et UQ (t) = 3N2RTQ (t)
ou R est une constante positive. Les températures initiales des blocs sont dif-
férentes, c’est-a-dire T} (0) # T5 (0).

1) Déterminer la température finale Ty du systeme lorsqu’il atteint 1'équilibre
thermique au temps ;.

2) Etablir le systeme d’équations différentielles qui décrit I’évolution tempo-
relle couplée des températures T (t) et T (t) des deux blocs.

3) Dans le cas particulier ou les blocs ont le méme nombre de moles de consti-
tuants, c¢’est-a-dire Ny = No = N, montrer que la différence de température
AT (t) =Ty (t) — T» (t) décroit de maniere exponentielle au cours du temps
lors de la thermalisation.

Solution

1) Compte tenu des énergies internes des deux blocs au temps initial ¢ = 0 et
au temps final ¢t = ¢y,

U1 (0)=3N1RT1 (O) et U1 (tf)=3N1RTf
U2 (0) = 3N2RT2 (0) et U2 (tf) = SNQRTf

la variation d’énergie interne de chaque bloc s’écrit,
AU, = Uy (t5) — Uy (0) = 3N, R (Tf Y (0))

AUy = Uy (t7) — Uy (0) = 3NaR (Tf -1 (0))
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La variation d’énergie interne AU du systéme est la somme des variations
d’énergies internes AU; et AUs des deux blocs. Etant donné que le sys-
teme est isolé, la dérivée temporelle de 1’énergie interne du systéeme est
nulle (1.47),

AU =AU, + AU, =0

ce qui s’écrit explicitement comme,
3N, R (Tf _y (0)) +3NoR (Tf -1 (0)) ~0
Ainsi, on obtient I'expression de la température finale Tt du systeme,

_ N1T; (0) + NoTs (0)
N1+ N,

Ty

Le premier principe (3.6) appliqué & chaque sous-systéme est décrit par la
loi de Fourier (3.22),
) ) A
U1 (t) = 3NRTy () = 137 () =k 5 (B () - 11 (1))
A

Uz (1) = 3N RT3 (1) = 1572 (1) = 5 5 (T1 (t) - To (t))

Ainsi, les équations d’évolution temporelle des températures des blocs sont
données par,

T (t) = 31\23 % (T2 ) — T (t))
r A

L= 357 7 () - 120)

La dérivée temporelle de la différence de température AT (t) = T (t) —
T5 (t) entre les blocs s’écrit,

AT (t) =Ty (t) — Ty (t)

Par conséquent, dans le cas particulier ou les blocs ont le méme nombre de
moles de constituants, c¢’est-a-dire Ny = Ny = N, I’équation d’évolution de
la différence de température entre les blocs est la suivante,
2k A

- — AT (1)

3NR ¢
Compte tenu de la différentielle d (AT (t')) = AT (') dt’, Vintégration de
I’équation différentielle par rapport au temps de t' = 0 & ¢/ = t s’écrit,

/ATW d (AT () 2k A /t a
0

AT (t) =

aroy AT'() — 3NR €

Le résultat de cette intégrale est,

() e

T 3NR (¢ T 1
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ou le temps de thermalisation 7 est défini comme,

7__3NR£
T 2% A

Ainsi, la différence de température entre les deux blocs décroit de maniere
exponentielle au cours du temps lors de la thermalisation,

AT (t) = AT (0) exp (— i)

3.9 Amortissement mécanique par transfert de chaleur

“Yowr  Un systeme isolé de volume V est constitué de deux sous-systémes,
notés 1 et 2, séparés par une paroi imperméable, diatherme et mobile, de masse
M, d’aire A et de volume négligeable. Les deux sous-systémes sont a ’équilibre
thermique a température T. Ils sont constitués chacun de N moles de gaz
parfait, ce qui signifie que la pression p; du gaz dans le sous-systéeme i, son
volume V;, le nombre de moles N et la température T sont liés par 1’équation
piVi = NRT ou R est une constante positive (sect. 5.6). La masse du gaz est
négligeable par rapport a la masse de la paroi et 1’énergie interne de la paroi
est négligeable par rapport a celle du gaz. Initialement, le systeme n’est pas
a I’équilibre mécanique. On considere que la variation de volume AV entre le
volume V; de chaque sous-systeme et son volume Vj a I’équilibre mécanique est
petite, c’est-a-dire AV <« V.

1) Exprimer la source d’entropie g en termes de la variation de pression entre
les sous-systemes p; — po et des dérivées temporelles du volume V; et V.

2) Déterminer la différence de pression p; — po entre les sous-systémes en
écrivant la source d’entropie comme une forme quadratique définie positive,

§

ES:f

VZ2>0

3) Compte tenu du fait que les sous-systémes sont constitués d’un gaz parfait,
a l’aide d’un développement limité au premier ordre en AV/V}, montrer que
I’équation du mouvement de la paroi est celle d’un oscillateur harmonique
amorti,

F+2vi+wiz=0

ou x est la coordonnée du déplacement de la paroi par rapport a la position
d’équilibre. Déterminer I’expression du coefficient de frottement ~y et de la
pulsation wq des oscillations non amorties.

4) En régime d’amortissement faible, c’est-a-dire v < wyg, déterminer la période
T des oscillations amorties.
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Solution

1) Comme la masse du gaz est négligeable par rapport a la masse de la paroi,
que le volume de la paroi est négligeable par rapport au volume du gaz
et que I'énergie interne de la paroi est négligeable par rapport a celle du
gaz, 'énergie du systeme est la somme de 1’énergie cinétique de la paroi de
masse M et de vitesse v, et des énergies internes Uy et Us du gaz dans les
deux sous-systemes,

1
E:in2+U1+U2
La dérivée temporelle de I’énergie interne s’écrit,
E=Mv-9+U +U;

Comme la paroi est imperméable, le nombre de moles de gaz N dans chaque
sous-systeme est constant. De plus, le systeme est a 1’équilibre thermique
a température T. Ainsi, compte tenu de la relation (2.19), les dérivées
temporelles de ’énergie interne de chaque sous-systeme s’écrivent,

U1:T5'1—p1V1 et UQZTSQ_pQVQ

Comme le systeme est isolé, I'énergie E est constante d’apres le premier
principe (1.13). Ainsi, la dérivée temporelle de I’énergie s’annule,

E:T<Sl+52>—p1‘/1—p2V2+M'U1.}:0

De plus, il n’y a pas d’échange d’entropie avec ’environnement. Par consé-
quent, compte tenu du deuxieéme principe (2.1) et de 'extensivité de I’entro-
pie (3.2),

Sl + Sg = S =Yg

Ainsi, on obtient une expression pour la source d’entropie Xg,

1 . . .
Yg = T(prl +p2 Vo — Mv~'v)
Comme le systeme est isolé, son volume V' est constant. On déduit alors la
condition suivante,

V=V1+V2=0 ainsi Vg:—Vl

On définit l'orientation positive du vecteur vitesse v de la paroi lorsque
son mouvement accroit le volume V; du sous systeme 1, c’est-a-dire lorsque
Vi > 0. En introduisant alors un vecteur surface de la paroi A = cste
colinéaire au vecteur vitesse et dont la norme correspond a 'aire A de la
surface de la paroi, on obtient les conditions suivantes,

Vi=A-v et ainsi Vi=A-9

ce qui implique que,
M

M'v-'i;:A2

ViVh
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Par conséquent, la source d’entropie devient,

1 M -\ -
g == — - —= |V
ST T ((pl p2) A2 1> 1
D’apres la condition d’évolution du deuxiéme principe (2.3), la source
d’entropie doit étre une forme quadratique définie positive,

§

ES:f

Vi>o0

ou £ > 0 est le coefficient de frottement thermoélastique qui est différent
de celui obtenu pour une paroi de masse négligeable (3.48). En comparant
les deux expressions pour la source d’entropie, on obtient la différence de
pression entre les sous-systemes en termes de V; et de V7,

M . .
pl—p2=EV1+§V1

Comme il y a N moles de gaz dans chaque sous-systeme, le volume V|
de chaque sous-systeme a 1’équilibre sera la moitié du volume V' du sys-
teme. Ainsi, dans la limite d’'un petit déplacement autour de la position
d’équilibre,
Vi=W+ AV et Vo=Vy— AV

ou Vo =V/2 et AV « V. Comme il y a N moles de gaz parfait & tempé-
rature T dans chaque sous-systeme, en faisant un développement limité au
premier ordre en AV/Vj, on obtient,

_NRT NRT 1 NRT( AV
TV T W AV T Vo
+7
Vo
NRT NRT 1 NRT AV
p2 = = ~ 1+ —
v W, AV TR Vo
Vo

Par conséquent, compte tenu de Vp = V/2, on obtient dans cette limite,

2NRT S8NRT
b1 b2 ‘/02 V2 14

La variation de volume AV est le produit de l'aire A de la surface de la
paroi et du déplacement x de la paroi par rapport a la position d’équilibre.
Ainsi, compte tenu du fait que x = 0 a I’équilibre et Vj = cste,

AV =Ax et Vi=Vo+ AV =AV = Ai ainsi Vi=A%

A Tlaide de ces relations, I’équation du mouvement obtenue au point pré-
cédent multipliée par A/M devient,

. GAT . BAXNRT
X x =
M My ¢
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Cette équation décrit le mouvement d’un oscillateur harmonique amorti,
qui peut étre mis sous la forme,

FH2yi+wiz=0
ou le coefficient de frottement est donné par,

_ A
YT oM

et la pulsation des oscillations non amorties s’écrit,

_ [SAZNRT
“o =\ Ty

En régime d’amortissement faible, v < wyp, la pulsation des oscillations

. , 1
amorties est donnée par( ),

A

= = \/32MNRT — €2A2V?2
2MV\/3 RT =& AV

— 2
w=wg—

La période des oscillations amorties est alors,

27r_47rMV 1

T="
w A \/32MNRT — 2 A2V2

L’équation du mouvement oscillatoire amorti rend compte de ’amortisse-

ment viscoélastique décrit en rhéologie par le modele de Zener® .
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